Next-Generation Aircraft Systems: Training, Real-time Response, and Licensing v. "status quo"

Ella M. Atkins <u>ematkins@umich.edu</u>

Professor University of Michigan Aerospace Engineering Department

My beginnings in aviation...

Training

• Pilot:

- Acquires knowledge of concepts from a book and "lectures"
- Obtains skill and practice by flying with mentorship then alone
- A well-trained pilot will <u>recall and apply knowledge/skill</u> 99.999...9% of the time they fly commercially; learning is the remaining 0.000...1%

• Autonomy:

- Product of a sound systems engineering process (incl. V&V)
- Needs to recall and apply knowledge/skill 99.999...9% of the time; learning is the remaining 0.000...1%
- Learning systems can be licensed but not straightforwardly verified or certified using conventional methods
- Run-time monitors can help avoid ridiculous (and unsafe) exceptions that occasionally occur during learning

Real-time Response: The Plane

- Pilot (real-time \rightarrow 1-3 seconds)
 - Sense:
 - Auditory cues (voice and alert) are processed quickly
 - Glass cockpit supports fast visual processing of sensor information
 - Decide (mission, safety):
 - Procedures and "instinct" with hard real-time deadlines
 - Collaborative pilot-automation systems make long-term decisions
 - Act:
 - Natural language (voice) allows rapid enunciation of thoughts
 - "Stick-and-rudder" interfaces translate motion intent to aircraft actuation
 - Keyboarding/touch screen allow rapid selection of options
- Autonomy (real-time: 1 100 msec or "as needed")
 - Sense: Fusion of GPS, INS, ILS et al, radar, vision, ADS-B, ...
 - Decide (mission, safety): Mode selection, flight planning and replanning
 - Act: Trajectory tracking (control), communication, exploration

Real-time Response: The System

- Let's get to redundant datalink → easier to V&V and even secure than voice
- ATC / Detect-and-Avoid → Let's get to optimal traffic prediction and management as well as heterogeneous traffic management to "open the skies" to everyone
- What if we had next-generation autonomy......

Run-time Monitors ~ Common Sense

- Fly like you "know how" (envelope protection)
- Don't go where you're not supposed to (geofencing, ROPS)
- Declare emergencies accurately, immediately (don't delay)
 - Aviate, navigate, communicate → avionics can perform these in parallel with speed and effectiveness
- Switch to backups as needed
 - Backups can be human or software "sense, decide, act" entities
 - Don't make assumptions choose the best solutions independent of legacy

Licensing and the "Status quo"

Pilot: Licensed

- Textbooks and FAR/AIM specify requirements
- Multiple choice tests: evaluates "book learning"
 - People can miss several questions and pass
 - Not comprehensive a form of "sparse sampling"
- Practical test (flight examination): Evaluates knowledge and skill
 - People can make small mistakes and pass lessons are learned this way
 - Pilots are not forced into unexpected adverse conditions in real flight...

Autonomy: Certified

- Systems engineers specify requirements
- Certification: Based on docs of design, fault/failure analysis, tests (sim. and flight)
- Verification:
 - Formal modeling & analysis of components, systems, software
- Verification and certification are both challenged by complexity...
 - Human cognition is partially observable and complex → licensing can handle this challenge for autonomy as well as human pilots

A thought experiment on human pilot training...

Some Concluding Questions...

- Why are humans licensed and autonomy certified?
 - Both are engaged in "sense-decide-act" (or OODA observe, orient, decide, act) behaviors
 - Since we can't read minds, we can't V&V humans (yet); let's not keep losing lives because we similarly can't scale V&V methods to interacting complex auto-OODA systems
- What training should be required for next-generation pilots and controllers?
 - Is stick-and-rudder still the primary required skill? \rightarrow No
 - Is algorithmic and data thinking the foundation on which autonomy-human collaboration will rest? → Yes
 - Why do we tend to trust human learning more than autonomy learning, and how can both perceived and real trust gaps be reconciled? (Thurs morning panel on Trust!)
- Re: the FARs...
 - Requirements are hard to "get right"...
 - Legal and social questions must be debated by legislators... but...
 - Why are the safety-oriented FARs manually written by people rather than iteratively improved through "supervised" feedback processes?

